US009342557B2

a2z United States Patent (10) Patent No.: US 9,342,557 B2
Kornacker et al. (45) Date of Patent: May 17, 2016
(54) LOW LATENCY QUERY ENGINE FOR 6,463,433 Bl 10/2002 Baclawski et al.
APACHE HADOOP 6,542,930 Bl 4/2003 Auvenshine
6,553,476 Bl 4/2003 Ayaki et al.
(71) Applicant: Cloudera, Inc., Palo Alto, CA (US) g:g;é:égé g} 11%88431 gﬁ:ﬁg’%}?%ét al.
6,931,530 B2 8/2005 Pham et al.
(72) Inventors: Marcel Kornacker, Oakland, CA (US); 7,031,981 Bl 4/2006 DeLuca et al.
Justin Erickson, San Francisco, CA 7,055,097 Bl 5/2006 Netsch
(US); Nong Li, San Francisco, CA (US); 7,069,497 Bl 6/2006 Desai
Lenni Kuff, San Francisco, CA (US); 7,107,323 B2 9/2006 Hara et al.
> . > A4 7,143,288 B2 11/2006 Pham et al.
Henry Noel Robinson, San Francisco, .
CA (US); Alan Choi, Palo Alto, CA (Continued)
(US); Alex Behm, San Francisco, CA
(US) OTHER PUBLICATIONS
(73) Assignee: Cloudera, Inc., Palo Alto, CA (US) Babaoglu, O., and K. Marzullo, “Consistent global states of distrib-
uted systems: Fundamental concepts and mechanisms,” Distributed
(*) Notice: Subject to any disclaimer, the term of this Systems, 53 pages, Jan. 1993.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by O days.
(21) Appl. No.: 13/800,280 Primary Examiner — Scott A Waldron
(22) Filed: Mar. 13, 2013 Assistant Examiner — Dongming Wang
(74) Attorney, Agent, or Firm — Perkins Coie LLP
(65) Prior Publication Data
(51) Int. Cl. A low latency query engine for APACHE HADOOP™ that
GOGF 1730 (2006.01) provides real-time or near real-time, ad hoc query capability,
(52) US.ClL while completing batch-processing of MapReduce. In one
CPC ... GO6F 17/30442 (2013.01); GOGF 17/30545 embodiment, the low latency query engine comprises a dae-
(2013.01) mon that is installed on data nodes in a HADOOP™ cluster
(58) Field of Classification Search for handling query requests and all internal requests related to
CPC ..o GOG6F 17/30463; GOGF 17/30433; query execution. In a further embodiment, the low latency
GO6F 17/30474 query engine comprises a daemon for providing name service
USPC et 707/718 and metadata distribution. The low latency query engine
See application file for complete search history. receives a query request via client, turns the request into
collections of plan fragments and coordinates parallel and
(56) References Cited optimized execution of the plan fragments on remote dae-

U.S. PATENT DOCUMENTS

5,325,522 A 6/1994 Vaughn
5,634,053 A 5/1997 Noble et al.
5,825,877 A 10/1998 Dan et al.

Common HIVE™ SQL and interface

100 102
1 SOL App (e.g., Hue}

104

Client {e.g., ODBC/IDBC)

118

Command Line Interface
\\

114a

T
—

mons to generate results at a much faster speed than existing
batch-oriented processing frameworks.

39 Claims, 14 Drawing Sheets

Unifted Metadata and scheduler
106 110 12

T HDFS™ Name
Node

HIVE
Metastore

State Store

114b 1ide

Real-Time Query Engine

Real-Time Query Engine

Real-Time Query Engine

1202 1222 1200
HOFS™ Data | | ypacemv HDFS™ Date
Node Node

122b 120¢
. ™
HBASE™ HDFS'™ Data
Node

122¢

HBasE™ |

US 9,342,557 B2

Page 2
(56) References Cited 2007/0172066 A1 7/2007 Davin
2007/0177737 Al 8/2007 Jung et al.
U.S. PATENT DOCUMENTS 2007/0180255 Al 8/2007 Hanada et al.
2007/0186112 Al 8/2007 Perlin et al.
7,325,041 B2 1/2008 Hara et al. 2007/0226488 Al 9/2007 Lin et al.
7392421 Bl 6/2008 Bloomstein et al. 2007/0234115 Al 10/2007 Saika
7,487,228 Bl 2/2009 Preslan et al. 2007/0255943 Al 11/2007 Kern etal.
7,496,829 B2 2/2009 Rubin et al. 2007/0282988 Al 12/2007 Bornhoevd et al.
7,577,900 B2 8/2009 Passero et al. 2008/0104579 Al* 5/2008 Hartmann 717/136
7,620,698 B2 11/2009 Hara et al. 2008/0140630 Al 6/2008 Sato et al.
7,631:034 Bl 12/2009 Haustein et al. 2008/0163075 Al 7/2008 Beck et al.
7,640,512 Bl 12/2009 Appling 2008/0244307 Al 10/2008 Dasari et al.
7,653,668 Bl 1/2010 Shelat et al. 2008/0256486 Al 10/2008 Hagiwara
7,664,729 B2 2/2010 Klein et al. 2008/0263006 Al 10/2008 Wolber et al.
7,685,109 Bl 3/2010 Ransil et al. 2008/0276130 Al 112008 Almoustafa et al.
7,698,321 B2 4/2010 Hackworth 2008/0307181 Al 12/2008 Kuszmaul et al.
7,734,961 B2 6/2010 Almoustafa et al. 2009/0013029 Al 1/2009 Childress et al.
7,818,313 Bl 10/2010 Tsimelzon et al. 2009/0150675 Al 6/2009 Cook
7,831,991 Bl 11/2010 Kiraly 2009/0150968 Al 6/2009 Ozzie et al.
7,904,809 B2 3/2011 Corning et al. 2009/0177697 Al 7/2009 Gao et al.
7,937,482 Bl 5/2011 Vermeulen et al. 2009/0259838 Al 10/2009 Lin
7,970,861 B2 6/2011 Simitci et al. 2009/0307783 Al 12/2009 Maeda et al.
7,984,043 Bl TI200LL WAAS oo 707/718 2010/0008509 Al 1/2010 Matsushita et al.
8,024,560 Bl 9/2011 Alten 2010/0010968 Al 1/2010 Redlich et al.
8,069,267 B2 11/2011 Powers-Boyle et al. 2010/0070769 Al 3/2010 Shima et al.
8,108,338 B2 1/2012 Castro et al. 2010/0107048 Al 4/2010 Takahara
8,108,771 B2 1/2012 Chijiiwa et al. 2010/0131817 Al 5/2010 Kong et al.
8,155,322 B2 4/2012 Bellare et al. 2010/0179855 Al 7/2010 Chen et al.
8,260,803 B2 9/2012 Hsu et al. 2010/0198972 Al 8/2010 Umbehocker
8,260,826 B2 9/2012 Chen et al. 2010/0242102 Al 9/2010 Cross etal.
8,306,919 B2 11/2012 Sakamura et al. 2010/0296652 Al 112010 Nakayama et al.
8,311,980 B2 11/2012 Saito et al. 2010/0306286 Al 12/2010 Chiu et al.
8,468,244 B2 6/2013 Redlich et al. 2010/0313246 Al 12/2010 Irvine et al.
8,484,716 Bl 7/2013 Hodgson et al. 2010/0325713 Al 12/2010 Kurita et al.
8,543,538 B2 9/2013 Frantz et al. 2010/0332373 Al 12/2010 Crabtree et al.
8,631,403 B2* 1/2014 Soundararajan etal. 718/1 2011/0023097 Al 1/2011 McDiarmid et al.
8,655,939 B2 2/2014 Redlich etal. 2011/0055578 Al 3/2011 Resch
8,667,267 Bl 3/2014 Garcia et al. 2011/0078549 Al 3/2011 Thueringer et al.
8,713,046 B2 4/2014 Vishnoi et al. 2011/0119328 Al 5/2011 Simitci et al.
8,732,674 Bl 5/2014 Agha ..oooooovoviriiinnn, 717/130 2011/0179160 Al 7/2011 Liuetal.
8,788,815 Bl 7/2014 Garcia et al. 2011/0228668 Al 9/2011 Pillai et al.
8,806,595 B2 8/2014 Nimashakavi et al. 2011/0236873 Al 9/2011 Bowers
8,802,599 B2 11/2014 Lindblad et al. 2011/0246816 Al 10/2011 Hsieh etal.
8,904,181 Bl 12/2014 Felsher et al. 2011/0246826 Al 10/2011 Hsieh etal.
2002/0055989 Al 5/2002 Stringer-Calvert et al. 2011/0276396 Al 11/2011 Rathod
2002/0073322 Al 6/2002 Park et al. 2011/0276495 Al 112011 Varadarajan et al.
2002/0138762 Al 9/2002 Horne 2011/0302417 Al 12/2011 Whillock et al.
2002/0174194 Al 11/2002 Mooney et al. 2011/0307534 Al 12/2011 Penget al.
2002/0184535 Al 12/2002 Moaven et al. 2012/0016901 Al /2012 Agarwal et al.
2002/0199119 Al 12/2002 Dunnion et al. 2012/0036146 Al* 2/2012 Annapragada 707/764
2003/0051036 Al 3/2003 Wang et al. 2012/0036357 Al 2/2012 Struik
2003/0055868 Al 3/2003 Fletcher et al. 2012/0102072 A1~ 4/2012 Jia et al.
2003/0093633 Al 5/2003 Thiesfeld et al. 2012/0130874 Al 5/2012 Mane et al.
2004/0003322 Al 1/2004 Collins et al. 2012/0131341 Al 52012 Mane et al.
2004/0019807 Al 1/2004 Freund 2013/0031240 Al 12013 Byzek
2004/0059728 Al 3/2004 Miller et al. 2013/0041872 Al 2/2013 Aizman et al.
2004/0059924 Al 3/2004 Soto et al. 2013/0054976 Al 2/2013 Brown et al.
2004/0103166 Al 5/2004 Bae et al. 2013/0124483 Al 5/2013 Furuhashi et al.
2004/0128506 Al 7/2004 Blakley, III et al. 2013/0218840 Al 82013 Smith et al.
2004/0172421 Al 9/2004 Saito et al. 2013/0304761 Al 11/2013 Redlich et al.
2004/0186832 Al 9/2004 Jardin 2013/0318347 Al 112013 Moftat
2005/0033957 Al 2/2005 Enokida 2014/0188841 Al* 7/2014 Sunetal. ..o 707/718
2005/0044311 Al 2/2005 Labhiri et al. 2014/0195558 Al* 7/2014 Murthyetal. 707/770
2005/0071708 Al 3/2005 Bartfaj et al. 2015/0074151 Al 3/2015 Chaiken et al.
2005/0091244 Al 4/2005 Marcotte
2005/0114650 Al 5/2005 Rockwood et al. OTHER PUBLICATIONS
%882;8};%% ﬁ} ggggg égz)n;ta?l' Corbett e.t al., “Spanner: Google’s Globally Distributed Database,”
2005/0182749 Al 8/2005 Matsui Transactions on Computer Systems (TOCS), vol. 31, No. 3, 14 pages,
2006/0020854 Al 1/2006 Cardona etal. Aug. 2013.
2006/0036850 Al 2/2006 Enokida Lamport, L., “Time, clocks, and the ordering of events in a distributed
2006/0050877 Al 3/2006 Nakamura system,” Communications of the ACM, vol. 21, No. 7, pp. 558-565,
2006/0143453 Al 6/2006 Imamoto et al. Jul. 1978.
2006/0156018 Al 7/2006 Lauer et al. Stoller, S.D., “Detecting global predicates in distributed systems with
2006/0224784 Al 10/2006 Nishimoto et al. clocks,” Distributed Computing, vol. 13, No. 2, pp. 85-98, Feb. 2000.
2006/0247897 Al 11/2006 Lin Exam Report for GB1403929.1, Applicant: Cloudera, Inc, Mailed
2007/0100913 Al 5/2007 Sumner et al. May 2, 2014, 6 pages.
2007/0113188 Al 5/2007 Bales et al. “Hadoop: The Definitive Guide, 2nd Edition” copyright 2011 Tom
2007/0136442 Al 6/2007 Palma et al. White.

US 9,342,557 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Heman, etal., “Positional Update Handling in Column Stores,” http://
event.cwi.nl/SIGMOD-RWE/2010/22-7f15al/paper.pdf 12 pages,
Jun. 2010.

Lamb et al., “The Vertica Analytic Database: C-Store 7 Years Later.”
http://arxiv.org/pdf/1208.4173.pdf (Section 3.7.1) Aug. 2012.
Partial European Search Report; Application No. 14187188.9; Appli-
cant Cloudera, Inc. Mail Dated Feb. 6, 2015; pp. 7.

Yotaro Nakayama “Realization of Virtual Data Integration Platform
using PostgreSQL”, Unisys Technology Review Mar 2012; pp.
25-37. http://www.unisys.co jp/tec__info/tr111/11103.pdf.

Chang, et al., “Bigtable: A Distributed Storage System for Structured
Data”, OSDI 2006, Seattle, Washington, USA, Nov. 6-8, 2006, 14
pages.

Canada Exam Report for application No. 2843459, mailing date May
22,2015, 3 pages.

Canada Exam Report for application No. 2843459, mailing date Aug.
5,2014, 3 pages.

European Examination Report for European Application No.
14157984.7, mailing date Jun. 16, 2015, 9 pages.

Exam Report for GB1403929.1, Applicant: Cloudera, Inc, Mailed
Jul. 17,2015, 10 pages.

Extended European Search Report for European Application No.
14187188.9; Applicant Cloudera, Inc. Mail Date Jul. 9,2015; pp. 12.
Partial European Search Report for European Application No.
14187188.9; Applicant Cloudera, Inc. Mail Date Feb. 6, 2015; pp. 7.
Marcel Kornacker et al.: “Cloudera Impala: Real-Time Queries in
Apache Hadoop, for Real I Cloudera Engineering Blog”, Oct. 24,
2012. Retrieved from Internet: http://blog .cloudera.com/blog/2012/
10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
[retrieved on Jun. 8, 2015].

U.S. Appl. No. 13/854,773, filed Apr. 1, 2013, Kirkland et al.
Beomseok Nam et al: “Spatial indexing of distributed multidimen-
sional datasets”, Cluster Computing and the Grid, 2005. CCGRID
2005. IEEE International Symposium on Cardiff—Wales, UK May
9-12, 2005, Piscataway, NJ, USA,IEEE, Piscataway, NJ, USA, vol. 2,
May 9, 2005, pp. 743-750.

Chapter 25: Distributed Databases ED -; ; Ramez Elmasri; Shamkant
B Navathe (eds), Jan. 1, 2011, Fundamentals of Database Systems
(Sixth Edition), Addison-Wesley, pp. 877-927.

Cheng, Security Attack Safe Mobil and Cloud-Based One-Time
Password Tokens Using Rubbing Encryption Algorithm, ACM, Jun.
2011, pp. 304-336.

Du et al., “A Pairwise Key Predistribution Scheme for Wireless
Sensor Networks,” ACM, May 2005, vol. 8 Issue 2, pp. 228-258.
European Search Report for European Application No. 14157984.7,
mailing date Jun. 6, 2014, 10 pages.

Kim et al., Design and Implementation of a Private and Public Key
Crypto Processor and Its Applicaiton to a Security System, IEEE,
Feb. 2004, vol. %0, Issue 1, pp. 214-224.

Ko et al., “A Study of Encryption Algorithm for RFID tag (SEED: 8
Roundsx64 bit block),” IEEE, s008, pp. 672-677.

Kossmann D: “The State of the Art in Distributed Query Processing”,
ACM Computing Surveys, ACM, New York, NY, us, vol. 32, No. 4,
Dec. 1, 2000, pp. 422-469.

Non-Final Office Action for U.S. Appl. No. 13/362,695, mailed Apr.
29, 2013, 23 pgs.

Tamer Dzsu et al: “Principles of Distributed Database Systems”,
Principles of Distributed Database Systems, XX, XX, Jan. 1, 1991,
pp. 74-93.

* cited by examiner

US 9,342,557 B2

Sheet 1 of 14

May 17, 2016

U.S. Patent

SpPON
W .rmm<mI

eeq , S4aH

ozel o021

suifug Asenp) suli]-|eoy

L B4

wy IS VaH

9pON
oeq , S4aH

wy S VEH

qcel

a0cl

BSPON
eed , S4aH

ecel

A

vl

A 4

suibug Asenp swil-jeay

A

arii
BpPON 2I0}SEIBIN
2i0]g s1EIS
SWEN s_.nmeI s~.rm_>_ H
2l oLl 901

JONpoYDS puR BIEPRISI PaiuN

auibug Aenp swi | -leay

Byl

20BIBIU| BUIT PUBLIWOD

9l

{ogar/ogaao “be)wenn

Y0l

(eny “Hre) ddy TOS

ol

soeLBlU| puB DG | JAIH UOWIWIOH

WL

0oL

U.S. Patent May 17, 2016 Sheet 2 of 14 US 9,342,557 B2

212

214 222

User Interface

216 218

Batch .
Processing Real-Time Meta Data

{MapReduce) Access

220

Storage
HDFS™, HBASE™)

Fig. 2

U.S. Patent May 17, 2016 Sheet 3 of 14

302

Manager

304

Low Latency Query Engine
Daemon

306

State Store Daemon

308

Command Line Tool

Fig. 3A

At Datanodes 314

Low Latency Query Engine
Daemon 316

Query Planner

318

Query Coordinator

320

Query Execution Engine

322

LLVM

Fig. 3B

US 9,342,557 B2

U.S. Patent May 17, 2016 Sheet 4 of 14 US 9,342,557 B2

402

Receive a query request

406

Turn request into collection of
plan fragments

408
Get membership information
from State store, block location
from name node (if hdfs), etc.

410

Initiates execution of plan
fragments on executor nodes

412
Aggregation
operation
required?

414

Receive results streamed from
executor nodes

Y 418

Stream intermediate results
between executor nodes

420

Perform final aggregation if
resulls at the coordinator

416

Stream query results to the
client

Fig. 4

US 9,342,557 B2

Sheet 5 of 14

May 17, 2016

U.S. Patent

oces

speay 198413 2207

2pON
" L_.m_m<mI

eieq ,, S4aH

a0¢q

susbug uognaoxg Awend

¥
9818
doreuipiool Aienp | panquisig
An
5918 ddiN Alind
Jauuejdq KAsnd
| oG
29z¢

vs "bi4

SPON

w 3SVEH eled , S4QH

qces q0¢s

auibug uonnoaxy Aiend

a8ig

A JojeuIpi0on Aend)

991§

sauueiq Lond

840]§ sjels

3PON
sweN , S4aH

sloiseloN
WELL

Zls

0i4

908

J8|npayos pue ejepelaiy paliun

SpPON

3SvaH
wL eleq ,, S4QH

BgeS B0cgS

- auibug uonoexg Lend

BgLg

Jojeuipiood Aiend

B91G

Jsuuejd Adnd

¥0S

ddy 108

z0s

50B3U] PUE TOS |, BAIH UOWLI0D)

US 9,342,557 B2

Sheet 6 of 14

May 17, 2016

U.S. Patent

081G aglLs
| oo T !
“ Jojeurpioos Aieny M " 103eUIpIoo) Aond “
r i . 1
2916 aaLsg
oo T T T T T T T T T T i T T T T T T T T T T T T T T 1
“ Jsuueld Aend " M Jouuejd Aend “
e i e 1
opig aris
99ZS a9z
(T e *
| siojsareys || NN, SdaH | | TR
|
I ol o w?
fA4%°} 0ig 906G

Ja|npayos pue eyepeisyy paiiun

ygg Aand TOS

08dao

09

ddy TOS

c0S

20BMBIU| PUB TOS |, FAIH UOWIWOD

WL

US 9,342,557 B2

Sheet 7 of 14

May 17, 2016

U.S. Patent

w3SYBH | | NG, S40H

9¢ges 2024

auibugz uoynaaxz Aand

ioreuipioon Liand

isuue|d Arand

g
o9z

alo]g 8)e18

NN, S4GQH

o6 ‘bi4

wFSYEH . NO, S4aH

4228 q0ze

autbug uoynsaxg Aiand

Aojeuipioon Land

agLs

Jsuueld Asnp

aris A

wawwNumz
owAANH
906

Ja|npayos pue eiepelsiy payiun

wISVBH | NG, S40H

BZes B0cS

auibugz uonnoaxg Arend

eis

Jojeuipioon Aiang

s

Jauuejd Lend
eyl
e9zg
0€do
p05
ddv 108
e

eoByBU| PUE TOS , FAIH UOWWIOD

US 9,342,557 B2

Sheet 8 of 14

May 17, 2016

U.S. Patent

v, 3SVEH NG, S3aH
9ZZG 902§

suibug uoynoaxgy And

as bi4

v, 3SVEH NG ,, S4aH

suibug uonnossexy Aiend

NG ,, S4aH

CrAA BOZS

suibug uopnosxg Areny
egls
Jojeuipioo) Aand
LI

suued Land

Brlg
e

Saie /,,// Gl
10jeuipi009 Aionp) paInqUISq w J0jeulpioo) Apnyd
I W Aing
3916 (IR Tag1g
isuueld A1and Jauued anp
.U.A.v.w.-.m..:.. . W | .n...v.F.m... .
9925 . Qozs
L - ai0)sEION
a/0)g 9)e)s © | NN, S40H JAIH
P Wi
s 0L 205

JOINPBYDS pUE BIEPRISI PalUN

SOBLISIU| pUe TTOS | FAIH VoW

US 9,342,557 B2

Sheet 9 of 14

May 17, 2016

U.S. Patent

speay 1081 |B007]

4SvaH NG, S40H

22es 2029

suibug uonnoexg Asend

081G

Aojeuipi1oon Aisny

agig

asuuejd Aiond
oy T
2926

20)S 9%EIS | | NN, S4aH

Zis T Tas

QICISBION

906

36 b1y

W 3SveEH NG |, S4aH

4228 G028

surbug uonnaexy Aisnpd

ag8ig
10)eUIpI00Y) Aiond)
agLs

Jpuueld AiBnpd

o FNH

JBINPBYDS pPUB BIEPEISI POBIUM

wnISVEH | NQ, SHOH

ezes B0CS

ouibug uoynosxg And S R

BgLG
aojeuipioon Aisn

BglG

Juueld Lend
eprg T
©9ZG
0800
Tvog i
ddv 108
206" i

80BLolU| PUE TOS ,, FAIH UOWWOD

US 9,342,557 B2

Sheet 10 of 14

May 17, 2016

U.S. Patent

i ISVEH | NO SdaH

-6 "bi14

p3SveH NG ,,S4aH

w3SvaH

Na y,S-4aH

ezzs

B0CS

322es

2028

qzcea

4026

suibug uonnosexz Aiend <

awbuzg uonnooxgz L1and

0815 T

siojsues]
Alowop u
9916 WH

ssuueld Aend

g
‘om‘mszf:}}31:1131}

i
I
I
i
|
|
I
I
I
I
I
I
L

I8INPaYos pue BlepeISN paliun

Jojeuipioo) fienp) A

ai0jg o3E)s | NN, S4QH |

ais T ois T Teos

> euibug uonpnoaxz Aenp

a8lg

Jopeuipioo) Apnd

qoLs

Jsuuejd Apny

q9zs

IOISEISN
e

-~ eglg

» Jopeuipioo) Apnd

mm_‘m

N Jauuefd Aeny

05

ddy 10S

208

o0pBlU| PUE TOS |, IAIH UOWWOD

US 9,342,557 B2

Sheet 11 of 14

May 17, 2016

U.S. Patent

9

b14

P09

ueosg

Wl

ueog

c09

3SVEH | | ,,S4H

By

pedog

U.S. Patent May 17, 2016 Sheet 12 of 14 US 9,342,557 B2

Fig. 7

US 9,342,557 B2

Sheet 13 of 14

May 17, 2016

U.S. Patent

8 'bi4

kisns

wom\«\

U.S. Patent May 17, 2016 Sheet 14 of 14 US 9,342,557 B2

900

Processor

Video Display
Instructions

Alpha-numeric Input Device

Main Memory

Cursor Control Device

Bus

instructions

Drive Unit

Machine-readable
(Storage) Medium

Non-volatile Memory

Instructions
Network Interface Device

Signal Generation Device

US 9,342,557 B2

1
LOW LATENCY QUERY ENGINE FOR
APACHE HADOOP
BACKGROUND
APACHE HADOOP™ project (hereinafter

“HADOOPT™”) is an open-source software framework for
developing software for reliable, scalable and distributed pro-
cessing of large data sets across clusters of commodity
machines. HADOOP™ includes a distributed file system,
known as HADOOP DISTRIBUTED FILE SYSTEM
(HDFS™). HDFS™ links together the file systems on local
nodes to form a unified file system that spans the entire
HADOOP™ cluster. HADOOP™ also includes HADOOP™
YARN that provides a framework for job scheduling and
cluster resource management that is utilized by a program-
ming framework known as MapReduce. HADOOP™ is also
supplemented by other Apache projects including APACHE
HIVE™ (hereinafter “HIVE™”) and APACHE HBASE™
(hereinafter “HBASE™”). HIVE™ is a data warchouse
infrastructure that provides data summarization and ad hoc
querying. HBASE™ is a scalable, distributed NoSQL (No
Structured Query Language) database or data store that sup-
ports structured data storage for large tables.

MapReduce processes data in parallel by mapping or divid-
ing a work into smaller sub-problems and assigning them to
worker nodes in a cluster. The worker nodes process the
sub-problems and return the results, which are combined to
“reduce” to an output that is passed on a solution. MapReduce
is a batch processing framework, and is optimized for pro-
cessing large amount of data in parallel by distributing the
workload across different machines. MapReduce offers
advantages including fault tolerance, but also suffers from
severe disadvantages such as high latency.

The latency in MapReduce is a result of its batch oriented
map/reduce model. In MapReduce, during an execution, the
output of the “map” phase serves as the input for the “reduce”
phase, such that the “reduce” phase cannot be completed
before the “map” phase of execution is complete. Further-
more, all the intermediate data is stored on the disc before
download to the reducer. Because of the above reasons,
MapReduce adds latency which can cause a simple query
started through MapReduce to take a long time to execute.

HIVE™ is a framework that lies on top of MapReduce.
HIVE™ ftranslates a language that looks like Structured
Query Language (SQL) to MapReduce code, making data
access in a HADOOP™ cluster much easier for users.
HIVE™, however, still uses MapReduce as its execution
engine, under the covers, and inherits all the disadvantages of
MapReduce. Due to this, simple HIVE™ queries can take a
long time to execute.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a diagram illustrating an example environ-
ment in which a low latency query engine may be deployed.

FIG. 2 depicts a block diagram illustrating example com-
ponents of a unified platform supporting batch-oriented and
real-time, ad hoc queries.

FIGS. 3A-3B depict block diagrams of example compo-
nents of an installation manager and a low latency query
engine installed on a data node in a Hadoop cluster to provide
interactive, real-time Structured Query Language (SQL) que-
ries directly on a unified storage layer.

FIG. 4 depicts an example method of processing an SQL
query by a low latency query engine for Hadoop.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 5A-5F depict example flows for query execution
using a low latency query engine for Hadoop.

FIG. 6 depicts a block diagram illustrating execution of an
example query plan by a low latency query engine for
Hadoop.

FIG. 7 depicts a screenshot illustrating example execution
times for a query performed on a data set using Hive and a low
latency query engine.

FIG. 8 depicts a block diagram illustrating a low latency
query engine for real-time, ad hoc queries in a business intel-
ligence environment.

FIG. 9 depicts a diagrammatic representation of a machine
in the example form of a computer system within which a set
of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed.

DETAILED DESCRIPTION

The following description and drawings are illustrative and
are not to be construed as limiting. Numerous specific details
are described to provide a thorough understanding of the
disclosure. However, in certain instances, well-known or con-
ventional details are not described in order to avoid obscuring
the description. References to one or an embodiment in the
present disclosure can be, but not necessarily are, references
to the same embodiment; and, such references mean at least
one of the embodiments.

Reference in this specification to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the disclosure. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment, nor are separate or alternative embodi-
ments mutually exclusive of other embodiments. Moreover,
various features are described which may be exhibited by
some embodiments and not by others. Similarly, various
requirements are described which may be requirements for
some embodiments but not other embodiments.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that same thing can be said in more than
one way.

Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor is
any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain
terms are provided. A recital of one or more synonyms does
not exclude the use of other synonyms. The use of examples
anywhere in this specification including examples of any
terms discussed herein is illustrative only, and is not intended
to further limit the scope and meaning of the disclosure or of
any exemplified term. Likewise, the disclosure is not limited
to various embodiments given in this specification.

Without intent to further limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present

US 9,342,557 B2

3

disclosure are given below. Note that titles or subtitles may be
used in the examples for convenience of a reader, which in no
way should limit the scope of the disclosure. Unless other-
wise defined, all technical and scientific terms used herein
have the same meaning as commonly understood by one of
ordinary skill in the art to which this disclosure pertains. In
the case of conflict, the present document, including defini-
tions will control.

Embodiments of the present disclosure include a low
latency (LL) query engine for HADOOP™. Embodiments of
the present disclosure also include systems and methods for
executing queries, in real time or near real time, on data stored
in HADOOP™. Embodiments of the present disclosure fur-
ther include systems and methods for executing ad hoc que-
ries, on data of any format, stored in HADOOP™.

The low latency (LL) query engine for HADOOP™ as
disclosed provides an alternate processing framework that
offers fast, interactive query results and uses a familiar SQL
query syntax. The low latency (I.L) query engine does notuse
MapReduce to generate results, but instead queries the data
directly via its daemons, which are spread across the
HADOOP™ cluster.

In one embodiment, the low latency (LL) query engine
provides a mechanism for fast querying of unstructured and/
or structured big data. The low latency (LL) query engine can
rapidly return information in response to queries. In many
cases, results to queries, even on large amounts of data, can be
returned in real-time or near real-time. Unlike MapReduce
which starts jobs which then query the data, the low latency
(LL) query engine performs queries directly on data stored in
HDFS™ and/or in HBASE™ tables. The direct query capa-
bility provides users the ability to perform high speed queries
on data as the data is being ingested in to the system.

In one embodiment, the low latency benefits of the low
latency (L) query engine allows users to perform queries in
an interactive manner. With existing query engines such as
MapReduce, even a simple query can take tens of minutes. As
a result, a user has to wait that long to see a result, and start
another query.

In another embodiment, the low latency (LL) query engine
implements a schema-on-read model that decouples process-
ing from data storage. Regardless of the format in which data
is stored in the underlying storage layer of HDFS™ and
HBASE™ the low latency (L) query engine directly queries
such data using relevant schema extracted at run time. By not
being coupled to a rigid schema, the low latency (LL) query
engine allows users to ask ad hoc exploratory questions that
can lead to insights and other discovery.

Example Environment for Deploying a Low Latency (LL)
Query Engine

FIG. 1 depicts a diagram illustrating an example environ-
ment 100 in which a low latency (LL) query engine may be
deployed. Environment 100 depicts a client 104 such as Java
Database Connectivity (JDBC) client, Open Database Con-
nectivity (ODBC) client, and the like that provides API and
other tools for connecting and/or accessing a HADOOP™
cluster. SQL applications 102 such as Hue, provide a user
interface for HADOOP™ to run queries or jobs, browse the
HDFS™, create workflows and the like. Environment 100
also includes a command line interface 116 for issuing que-
ries to the low latency (LL) query engine daemons running on
data nodes 120qa-c that comprise the HADOOP™ cluster. In
one embodiment, the client 104, the web application 102 and
the command line interface 116, each or together may be
commonly referred to as a client.

Environment 100 depicts a plurality of data nodes 120a-c.
A low latency (LL) query engine daemon runs on each of the

15

20

30

40

45

50

65

4

data nodes. A low latency (LL) query engine daemon is a long
running process that coordinates and executes queries. Each
instance of the low latency (LLL) query engine daemon can
receive, plan and coordinate queries received via the clients
102/104. For example, the low latency (LL) query engine can
divide a query into fragments, which are distributed among
remote nodes running an instance of the low latency (LL)
query engine for execution in parallel. Some of the data nodes
120a-¢c may run just HDFS™, while others may run
HBASE™ region servers 122a-c. The queries are executed
directly onthe HDFS™ (e.g., 120a-c) and/or HBASE™ (e.g.,
122a-c).

Environment 100 depicts unified metadata and scheduler
components such as HIVE™ metastore 106, YARN 108,
HDFS™ name node 110 and/or state store 112. The HIVE™
metastore 106 includes information about the data available
to the low latency (LL) query engine. Specifically, the
HIVE™ metastore includes the table definition, i.e., mapping
of the physical data into the logical tables that are exposed.
The YARN 108 performs job scheduling and cluster resource
management. The HDFS™ name node (NN) 110 includes the
details of the distribution of the files across data nodes to
optimize local reads. In one implementation, the name node
110 may even include information concerning disk volumes
the files sit on, on an individual node.

The state store 112 is a global system repository which runs
on a single node in the cluster. The state store 112 in one
implementation can be used as a name service. All low
latency (LL) query engine daemons, at start up, can register
with the state store and get membership information. The
membership information can be used to find out about all the
low latency (LLL) query engine daemons that are running on
the cluster. The state store 112, in a further implementation,
can be used to provide metadata for running queries. The state
store 112 can cache metadata and distribute the metadata to
the low latency (LL) query engine daemons at start up or
another time. When the state store fails, the rest of the system
may continue to operate based on last information received
from the state store. In a further implementation, the state
store can store and distribute other system information such
as load information, diagnostics information, and the like that
may be used to improve the functioning and/or performance
of the HADOOP™ cluster.

FIG. 2 depicts a block diagram illustrating example com-
ponents of a unified HADOOP™ platform 212 supporting
batch-oriented and real-time, ad hoc queries. The unified
HADOOP™ platform 212 supports distributed processing
and distributed storage. The unified HADOOP™ platform
212 includes a user interface 214, storage 220 and meta data
222 components. The user interface 214 includes HIVE™
interfaces such as ODBC driver, IDBC driver, Hue Beeswax,
and the like. The user interface 214 also includes SQL sup-
port. Viathe user interface 214, queries can be issued, data can
be read from or written to storage 220, etc. The storage 220
includes HDFS™ and/or HBASE™ storage. The HDFS™
may support various file formats, including but not limited to:
text file, sequence file, RC file, Avro, and the like. Various
compression codecs including snappy, gzip, deflate, bzip, and
the like may also be supported. The metadata 222 may
include, for example, information such as tables, their parti-
tions, schema-on-read, columns, types, table/block locations,
and the like. The metadata 222 may leverage existing HIVE™
metastore, which includes mapping of HBASE™ table,
predicates on row key columns mapped into start/stop row,
predicates on other columns mapped into single column value
filters, and the like.

US 9,342,557 B2

5

Existing HADOOP™ platform uses a batch oriented query
engine (i.e., MapReduce) for batch processing 216 of
HADOOP™ data. The batch processing capability of
MapReduce is complemented by a real-time access compo-
nent 218 in the unified HADOOP™ platform 212. The real-
time access component 218 allows real-time, ad hoc SQL
queries to be performed directly on the unified storage 220 via
a distributed low latency (L) query engine that is optimized
for low-latency. The real-time access component 218 can thus
support both queries and analytics on big data. Existing query
engines (e.g., MapReduce), on the other hand, feature tight
coupling of the storage, metadata and the query, which means
that such query engines would need to read the data remotely
from HADOOP™, and convert it into their storage format
before they can do queries because of the tight coupling.

FIG. 3A depicts a block diagram of example components
of'an installation manager 302 for installing components of a
low latency (LL) query engine in a HADOOP™ cluster to
provide interactive, real-time SQL queries directly on a uni-
fied storage layer.

The manager 302 is an installation manager that can auto-
matically install, configure, manage and monitor the low
latency (LL) query engine. Alternately, the low latency (LL)
query engine may be installed manually. The installation
manger 302 installs three binaries including an low latency
(LL) query engine daemon 304, a state store daemon 306 and
a low latency (LL) query engine shell 308. As described
above, the low latency (LL) query engine daemon 304 is a
service or process that plans and executes queries against
HDFS™ and/or HBASE™ data. The low latency (LL) query
engine daemon is installed on each data node in the cluster.
The state store daemon 306 is a name service that tracks the
location and status of all the low latency (LL) query engine
daemon instances in the cluster. The state store daemon 306
can also be a metadata store for providing metadata and/or
other diagnostic information in some implementations. The
low latency (LL) query engine shell 308 is a command line
interface for issuing queries to a low latency (LL) query
engine daemon, and is installed on a client.

FIG. 3B depicts a block diagram of example components
of'a low latency (LL) query engine daemon installed on each
data node in a HADOOP™ cluster. A low latency (LL) query
engine daemon 304 is installed at each data node 314, as
depicted. The low latency (LL) query engine daemon 304
includes a query planner 316, a query coordinator 318 and a
query execution engine 320 in one embodiment. The query
planner 314 turns query requests from clients into collections
of'plan fragments, and provides the planned fragments to the
query coordinator 318. The query planner 314 may constitute
the front end of the low latency (LL) query engine, and may
be written in Java, or another suitable language, to facilitate
interaction with the rest of the HADOOP™ environment,
such as the meta store/state store, APIs, and the like. The
query planner 314 can use various operators such as Scan,
HashJoin, HashAggregation, Union, TopN, Exchange, and
the like to construct a query plan. Each operator can either
materialize or generate data or combine data in some way. In
one implementation, for example, the query planner can cre-
ate alefty plan or tree of one or more operators (e.g., manually
or using an optimizer). The scan operator allows a plan to be
broken up along scan lines or boundaries. Specialized scan
nodes may be present for all the different storage managers.
So, for example, there may be an HDFS™ scan node and an
HBASE™ scan node, each of which can internally employ
different process for different file formats. Some plans com-
bine data for hash aggregation which can fill up a hash table
and then output the aggregate results. A union operator can

10

15

20

25

30

35

40

45

50

55

60

65

6

merge the output from different plan fragments. A TopN
operator can be the equivalent of order by with the limit. The
exchange operator can handle the data exchange between two
plan fragments running on two different nodes.

The query coordinator 318 initiates execution of the
planned fragments across all of the low latency (LLL) query
engine daemons that are involved in the query. The query
coordinator 318 uses the membership information from the
state store and/or location information for the data blocks
from the Name Node to determine or identify the low latency
(LL) query engine daemons on data nodes for executing
query plan fragments. In one implementation, the query coor-
dinator 318 can also apply any predicates from the query to
narrow down to the set of files and blocks the plan fragments
should be run against. The query coordinator 318 can also
perform the final aggregation or merge of data from the low
latency (LL) query engine daemons in remote nodes. In one
implementation, the low latency (LL) query engine daemons
may pre-aggregate some of the data, so that the aggregation is
distributed across the nodes, thereby speeding up the query.

The query execution engine 320 executes the planned
query fragments locally on the HDFS™ and HBASE™. For
example, the query execution engine 320 initiates the scan
and/or any other query operators. The query execution engine
320 is written in C++, but may also be written in any other
suitable language such as Java. The query execution engine is
an execution engine that is separate from MapReduce. While
the query execution engine uses the infrastructure that pro-
vides the data (e.g., HDFS™ and HBASE™), the query
execution engine does not utilize any of the infrastructures
that run map reductions, such as job trackers or task trackers.

In one embodiment, the query execution engine 320 can
include a component 322, a low level virtual machine
(LLVM), an optimizer, or other compiler infrastructure, for
run-time code generation in order to transform interpretive
code into a format that can be efficiently executed by the
central processing unit (CPU). Typical relational database
systems for instance, have interpretive code for evaluating
expressions to extract data from indices etc. The query execu-
tion engine avoids this problem by using low level virtual
machines (LLVMs) to more tightly couple code with hard-
ware. For example, an expression where A equals B over A+B
equals C in a query can be evaluated by making three function
calls. Instead of making the three function calls, LLVM uses
the operations that the CPU provides in order to evaluate the
expression and achieve speed gains.

Ina further embodiment, the low latency (LL) query engine
can also use special CPU instructions, in order to, for
example, perform text processing and/or other resource inten-
sive processes. By way of another example, hash value com-
putations may be performed using a special Cyclic Redun-
dancy Check (CRC32) instruction to achieve speed gains.
Example Query Processing

FIG. 4 depicts an example method of processing an SQL
query by a low latency (LL) query engine for HADOOP™.,
As described above, an instance of the low latency (LL) query
engine runs on each node that has data (e.g., HDFS™ and
HBASE™) in the HADOOP™ cluster. A user submits a
query via a client (e.g., ODBC client/Hue/command line tool)
to any of the low latency (LL) query engine demons. Via the
client (e.g., the ODBC client), the user can target any of the
low latency (LL) query engine daemons, by directly connect-
ing to a particular low latency (LLL) query engine daemon on
adatanode. Alternately, a round robin strategy may beused to
spread the load across all the remote daemons in the cluster.

In one implementation, at block 402, a user facing side of
a low latency (LL) query engine daemon (i.e., a query plan-

US 9,342,557 B2

7

ner) receives or accepts a query request from the user. The
query planner turns the request into a collection of plan frag-
ments at block 406, and hands off the query plan fragments to
a query coordinator in the same node. The query coordinator
serves as a single instance that coordinates the entire plan of
execution across all other low latency (LL) query engine
daemons or remote daemons involved in the query. In one
implementation, to coordinate the entire plan of execution,
the query coordinator receives or obtains membership infor-
mation from the state store and location information from the
name node (for HDFS™ query) at block 408. Using the
membership information and the block location information,
the query coordinator determines which daemons or nodes in
the cluster should receive the query plan fragments for execu-
tion. At block 410, the query coordinator distributes the query
plan fragments to the nodes having relevant data to initiate
execution of the plan fragments against the data local to each
node.

During execution, all the nodes can talk to each other in a
streaming fashion. In one implementation, if the query does
not involve aggregation or blocking operators as determined
at decision block 412, results streamed from the query execu-
tors (i.e., query execution engines of nodes receiving the
query plan fragments) are received by the query coordinator
atblock 414. The results are then streamed back to the user via
the client at block 416.

Alternately, if a blocking or aggregator operator is present
in the query, as determined at decision block 412, intermedi-
ate results are streamed between the query executors and
pre-aggregated at one or more the nodes at block 418. At
block 420, the query coordinator performs an aggregation or
merge of the pre-aggregated results to determine the final
result, which is then sent to the user via the client at block 416.

FIGS. 5A-5F depict example flows for query execution
using a low latency (LL) query engine for HADOOP™.,

Referring to FIG. 5A, the HADOOP™ environment 500
for operating the low latency (LL) query engine includes a
common HIVE™ SQL, and interface including an SQL appli-
cation 502 and a client 504 such as the ODBC client, JDBC
client, and the like. The environment also includes unified
meta data and scheduler entities such as the HIVE™ meta
store 506, YARN 508, HDFS™ pame node 510 and/or state
store 512. As depicted in this example, the HADOOP™ envi-
ronment includes a cluster of three HDFS™ data nodes 5204-
¢, each of which has an instance of the low latency (LL) query
engine daemon 526a-c respectively, running on top. The cli-
ent connects to only one instance of the low latency (LL)
query engine daemon (e.g., 5265). The low latency (LL)
query engine daemon connects to or communicates with one
or more of the unified meta data and scheduler entities. Fur-
thermore, as depicted, the low latency (LL) query engine
daemons connect to each other for distributed and fully mas-
sively parallel processing (MPP). It should be noted that low
latency (LL) query engine daemons 526a-c on data nodes
520a-c and the state store 512 are the components of the low
latency (LL) query engine that provides real-time, ad hoc
query capability in HADOOP™. The low latency (LL) query
engine leverages existing common HIVE™ SQL and Inter-
face 502 and 504, HIVE™ metastore 506, YARN 508,
HDFS™ name node 510 and the unified storage layer com-
prising the HDFS™ data node 520a-c and HBASE™ region
servers 522a-c.

Referring to FIG. 5B, a user using the SQL application 502
submits an SQL query request 524 via a client 504. The SQL
query request can go any of the nodes 526a-c. In one imple-
mentation, the node to which the SQL query request should
be sent can be specified via the client/application. Alternately,

20

30

40

45

55

8

anode can be selected based on a round robin or other sched-
uling method for load balancing. An instance of the low
latency (LL) query engine daemon 5265 on the HDFS™ data
node 5204 is depicted as the recipient of the SQL query
request 524. The SQL query request 524 interacts with the
query planner 51456 of the low latency (LL) query engine
daemon 5265.

Referring to FIG. 5C, the query planner 5145 and/or the
query coordinator 5165 that received the query request 524,
communicates with one or more of the unified meta data and
scheduler entities to get information for creating a plan for the
query request and/or coordinating execution of the query
request. For example, the query planner and/or coordinator
may determine which data nodes are available, and the loca-
tion of data blocks relevant to the query. In HDFS, replicas of
data blocks are stored in various data nodes. The query plan-
ner and/or coordinator can communicate with the name node
510 to determine where each of the replicas for each data
block is stored and can select one of the replicas to run the
query. A round robin or another method may be used in
selecting a replica from the group of replicas of data blocks.
The query planner 5145 can parse and analyze the query
request to determine tasks that can be distributed across the
low latency (LL) query engine daemons in the cluster.

Referring to FIG. 5D, the query coordinator 5165 hands off
the tasks or plan fragments from the query planner 5145 to the
query execution engines 518a-c of each of the nodes that hold
data relevant to the query request. All three query execution
engines run in parallel and distributed fashion. Referring to
FIG. 5E, the query execution engines 518a-c execute the plan
fragments locally on the nodes that hold the relevant data. For
example, the query execution engine 518¢ performs a local
direct read of HDFS™ data stored in HDFS™ data node
520c¢. Similarly, the query execution engines 518a and 5185
perform local direct reads of data stored in HDFS™ data node
520a and HBASE™ 52254 respectively. The query execution
engines 518a-c may also initiate other query operators speci-
fied in the plan fragments.

Referring to FIG. 5F, results from the query executions
engines 518a-c are passed to the query coordinator 5165 via
in memory transfers. If the query involves block operations
(e.g., TopN, aggregation, etc.), intermediate results are
streamed between the RT query engine demon nodes for
pre-aggregation, and the final result is aggregated at the query
coordinator 5165. Keeping query results or intermediate
results in memory provides performance improvement as the
transfers are not bound by the speed of the disks. The final
results 528 to the query request 524 is then returned by the
query coordinator 5165 to the user via the client 504 and the
SQL application 502.

FIG. 6 depicts a block diagram illustrating execution of an
example query plan by a low latency (LL) query engine for
HADOOP™,

The query plan 602 corresponds to an example query pro-
vided below.

SELECT state, SUM(revenue)
FROM HdfsTbl h JOIN HbaseTbl b ON (...)
GROUP BY 1 ORDER BY 2 desc LIMIT 10

The query plan 602 comprises an HDFS™ scan and an
HBASE™ scan, joining of the data from the two scans and
computing an aggregation with a grouping (TopN) operation.
The query plan 602 is broken along scan lines to form sepa-
rate plan fragments. For example, one plan fragment may
include an HBASE™ data scan and another plan fragment

US 9,342,557 B2

9

may include an HDFS™ data scan. The HBASE™ scanis run
locally at region servers that hold the HBASE™ data relevant
to the query as depicted at block 608. The HDFS™ scan is
also run locally on data nodes holding the relevant HDFS™
data as depicted in block 606.

In one implementation, it may be more optimal to execute
the join operation close to the scanners that produce the actual
data. As depicted in block 606, the data nodes have exchange
nodes or operators that receive data broadcast from the
HBASE™ scans. At the data nodes, the hash join operation
builds an in memory hash table and performs the joining
operation, following by a pre-aggregation operation. The out-
put of the pre-aggregation operation is then sent to the final
plan fragment 604. The final plan fragment has only once
instance and runs on the query coordinator handling the
query. At the coordinator, an exchange node receives the data
from the pre-aggregation and performs an aggregation opera-
tion in another hash table. The output of the aggregation
operation is then run though a TopN operation that produces
the final result that is provided to the client. As depicted, both
HDFS™ and HBASE™ scans can occur in parallel. Simi-
larly, the join and aggregation operations can also occur in
parallel at data nodes holding the relevant data. The parallel
execution, along with in-memory transfers of intermediate
data, can result in low latency response to queries.

Consider that the RT query engine illustrated in FIGS.
5E-F is processing the query of FIG. 6. Referring to FIG. 5E,
the query execution engines 5184 and 518¢ scan HDFS™
data on the HDFS™ data node 520a and 520c¢ respectively.
The query engine 5185 scans HBASE™ data 5225. Referring
to FIG. 5F, the query execution engine 5185 performing the
HBASE™ gcan, broadcasts the data from the scan to the two
execution engines 518a and ¢ performing the HDFS™ scans
as depicted. Each of the query execution engines 518a and
518c¢ in turn performs a join operation, and sends pre-aggre-
gation results to the initiating query coordinator 5165. The
initiating query coordinator then aggregates the results and
performs a TopN operation to obtain a final result that is then
provided to the client 504 as SQL result 528. In implementa-
tions where there is no need for any aggregation, data
streamed to the query coordinator from the query execution
engines may be streamed to the client in a very fast and
efficient manner.

FIG. 7 depicts a screenshot illustrating example execution
times for a query performed on a data set using HIVE™ and
a low latency (LL) query engine. The query is performed on
a virtual machine with example data set to determine the
number of entries in a table using HIVE™/MapReduce and
the low latency (LL) query engine. Since a query that is
executed in HIVE™ must run one or more MapReduce jobs
to retrieve the results, it takes HIVE™ almost 40 seconds to
execute a single COUNT query. Much of the 40 seconds is
actually used to start up and tear down the MapReduce job.
When the same COUNT query is executed on the same data
set using the low latency (LL) query engine, the execution
time is significantly reduced to about 0.5 seconds as depicted.
The significant reduction in the query execution time illus-
trates the advantage of the low latency (LLL) query engine in
providing real-time interaction with the HADOOP™ cluster
to perform analytical, transactional, and any other queries
without having to wait a long time in between queries.

Data Management

In one embodiment, the low latency (LL) query engine
provides the advantage of low latency which allows users to
query large volumes of data and obtain answers at much faster
speed than possible using the existing batch processing
framework of HIVE™ and MapReduce. In a further embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10
ment, the RT query engine provides flexibility in defining
schemas that can be used to search for hidden insights in large
volumes of data.

In relational database management systems (RDBMS), a
schema is defined first (i.e., schema-on-write model). The
format of the input data is converted to the proprietary format
of the database prior to storing the input data. A schema-on-
write model works well for answering known questions. If a
previously unknown question needs to be answered, new data
may need to be captured. However, with a rigid schema, the
database system cannot start accepting new data that does not
match the schema. To fit in the new data, the schema must be
modified or amended. In order to modify or upgrade the
schema to capture new data, data architects typically need to
change all the systems connected to the database system to,
for example, correctly parse and load the new data, read or
recognize the new data, and the like. This process of upgrad-
ing the schema and ensuring that all the systems that are
tightly coupled with the database system work together, can
take a long time. Until then, the new data cannot be captured
to answer the question.

The low latency (L) query engine decouples the process-
ing of the data from the storing of data. For example, the
underlying storage system in Hadoop can accept files in their
original native format (e.g., tab-delimited text files, CSV,
XML, JSON, images, etc.). The low latency (LL) query
engine uses a schema-on-read model to translate the data
stored in any format into an economical in memory format
(e.g., Tuple format) on the fly. For example, when the low
latency (LL) query engine interacts with text data, the low
latency (LL) query engine can read the text data once, per-
form a transformation, and the data from the transformation
can be handled in the economical in memory formattill all the
processing is complete.

The low latency (LL) query engine leverages an existing
HADOOP™ components such as the HIVE™ metastore and
the underlying unified storage (HDFS™ and HBASE™). The
data that the low latency (LLL) query engine queries against is
simultaneously available to MapReduce. For example, a
query is being executed, the low latency (LL) query engine
parses the file (any format) and extracts the relevant schema
from the meta store at run time. In other database systems, this
is not possible as the format of the data and the definition of
how a user interacts with the data (i.e., schema in the meta
store) are tightly coupled. Thus a database file stored in
Oracle database can be read by Oracle and no other frame-
work.

FIG. 8 depicts a block diagram illustrating a low latency
(LL) query engine for real-time, ad hoc queries in a business
intelligence environment. As depicted, HADOOP™ 804
stores original data 806 in their native format. Unlike tradition
relational databases where data fitting into a rigid schema is
collected, the original data 810 does not adhere to any rigid
schema and is in fact decoupled from the processing aspect.
The low latency (LL) query engine 806 running on a data
node in HADOOP™ can accept a query 808 from an appli-
cation such as abusiness intelligence (BI) tool 816 via a client
(e.g., ODBC/IDBC driver).

The query 808 can be made using a flexible schema-on-
read model that can be defined, adapted and/or re-adapted to
extract new value from the data 810 that would not be possible
with rigid schemas. The low latency (LL) query engine 806
can read and parse relevant data once, perform a transforma-
tion, and store the transformed data 812 is an optimized in
memory format to provide a fast response to the query 808.

FIG. 9 shows a diagrammatic representation of a machine
in the example form of a computer system within which a set

US 9,342,557 B2

11

of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be
executed.

Inthe example of FIG. 9, the computer system 900 includes
a processor, memory, non-volatile memory, and an interface
device. Various common components (e.g., cache memory)
are omitted for illustrative simplicity. The computer system
900 is intended to illustrate a hardware device on which any of
the components depicted in the example of FIG. 1 (and any
other components described in this specification) can be
implemented. The computer system 900 can be of any appli-
cable known or convenient type. The components of the com-
puter system 900 can be coupled together via a bus or through
some other known or convenient device.

The processor may be, for example, a conventional micro-
processor such as an Intel Pentium microprocessor or
MOTOROLA POWERPC™ microprocessor. One of skill in
the relevant art will recognize that the terms “machine-read-
able (storage) medium” or “computer-readable (storage)
medium” include any type of device that is accessible by the
processor.

The memory is coupled to the processor by, for example, a
bus. The memory can include, by way of example but not
limitation, random access memory (RAM), such as dynamic
RAM (DRAM) and static RAM (SRAM). The memory can
be local, remote, or distributed.

The bus also couples the processor to the non-volatile
memory and drive unit. The non-volatile memory is often a
magnetic floppy or hard disk, a magnetic-optical disk, an
optical disk, a read-only memory (ROM), such as a CD-
ROM, EPROM, or EEPROM, a magnetic or optical card, or
another form of storage for large amounts of data. Some of
this data is often written, by a direct memory access process,
into memory during execution of software in the computer
800. The non-volatile storage can be local, remote, or distrib-
uted. The non-volatile memory is optional because systems
can be created with all applicable data available in memory. A
typical computer system will usually include at least a pro-
cessor, memory, and a device (e.g., a bus) coupling the
memory to the processor.

Software is typically stored in the non-volatile memory
and/or the drive unit. Indeed, for large programs, it may not
even be possible to store the entire program in the memory.
Nevertheless, it should be understood that for software to run,
if necessary, it is moved to a computer readable location
appropriate for processing, and for illustrative purposes, that
location is referred to as the memory in this paper. Even when
software is moved to the memory for execution, the processor
will typically make use of hardware registers to store values
associated with the software, and local cache that, ideally,
serves to speed up execution. As used herein, a software
program is assumed to be stored at any known or convenient
location (from non-volatile storage to hardware registers)
when the software program is referred to as “implemented in
a computer-readable medium.” A processor is considered to
be “configured to execute a program” when at least one value
associated with the program is stored in a register readable by
the processor.

The bus also couples the processor to the network interface
device. The interface can include one or more of a modem or
network interface. It will be appreciated that a modem or
network interface can be considered to be part of the com-
puter system. The interface can include an analog modem,
isdn modem, cable modem, token ring interface, satellite
transmission interface (e.g. “direct PC”), or other interfaces
for coupling a computer system to other computer systems.
The interface can include one or more input and/or output

10

15

20

25

30

35

40

45

50

55

60

65

12

devices. The I/O devices can include, by way of example but
not limitation, a keyboard, a mouse or other pointing device,
disk drives, printers, a scanner, and other input and/or output
devices, including a display device. The display device can
include, by way of example but not limitation, a cathode ray
tube (CRT), liquid crystal display (LCD), or some other
applicable known or convenient display device. For simplic-
ity, it is assumed that controllers of any devices not depicted
in the example of FIG. 8 reside in the interface.

In operation, the computer system 800 can be controlled by
operating system software that includes a file management
system, such as a disk operating system. One example of
operating system software with associated file management
system software is the family of operating systems known as
WINDOWS™ from Microsoft Corporation of Redmond,
Wash., and their associated file management systems.
Another example of operating system software with its asso-
ciated file management system software is the LINUX™
operating system and its associated file management system.
The file management system is typically stored in the non-
volatile memory and/or drive unit and causes the processor to
execute the various acts required by the operating system to
input and output data and to store data in the memory, includ-
ing storing files on the non-volatile memory and/or drive unit.

Some portions of the detailed description may be presented
in terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the methods of some embodiments. The required struc-
ture for a variety of these systems will appear from the
description below. In addition, the techniques are not
described with reference to any particular programming lan-
guage, and various embodiments may thus be implemented
using a variety of programming languages.

US 9,342,557 B2

13

In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine in
a client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a laptop computer, a
set-top box (STB), a personal digital assistant (PDA), a cel-
Iular telephone, an iPhone, a Blackberry, a processor, a tele-
phone, a web appliance, a network router, switch or bridge, or
any machine capable of executing a set of instructions (se-
quential or otherwise) that specify actions to be taken by that
machine.

While the machine-readable medium or machine-readable
storage medium is shown in an exemplary embodiment to be
a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” and “machine-readable storage
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the pres-
ently disclosed technique and innovation.

In general, the routines executed to implement the embodi-
ments of the disclosure, may be implemented as part of an
operating system or a specific application, component, pro-
gram, object, module or sequence of instructions referred to
as “computer programs.” The computer programs typically
comprise one or more instructions set at various times in
various memory and storage devices in a computer, and that,
when read and executed by one or more processing units or
processors in a computer, cause the computer to perform
operations to execute elements involving the various aspects
of the disclosure.

Moreover, while embodiments have been described in the
context of fully functioning computers and computer sys-
tems, those skilled in the art will appreciate that the various
embodiments are capable of being distributed as a program
product in a variety of forms, and that the disclosure applies
equally regardless of the particular type of machine or com-
puter-readable media used to actually effect the distribution.

Further examples of machine-readable storage media,
machine-readable media, or computer-readable (storage)
media include but are not limited to recordable type media
such as volatile and non-volatile memory devices, floppy and
other removable disks, hard disk drives, optical disks (e.g.,
Compact Disk Read-Only Memory (CD ROMS), Digital Ver-
satile Disks, (DVDs), etc.), among others, and transmission
type media such as digital and analog communication links.

Unless the context clearly requires otherwise, throughout
the description and the claims, the words “comprise,” “com-
prising,” and the like are to be construed in an inclusive sense,
as opposed to an exclusive or exhaustive sense; that is to say,
in the sense of “including, but not limited to.” As used herein,
the terms “connected,” “coupled,” or any variant thereof,
means any connection or coupling, either direct or indirect,
between two or more elements; the coupling of connection
between the elements can be physical, logical, or a combina-
tion thereof. Additionally, the words “herein,” “above,”
“below,” and words of similar import, when used in this
application, shall refer to this application as a whole and not
to any particular portions of this application. Where the con-
text permits, words in the above Detailed Description using

5

10

15

20

25

30

40

45

50

55

60

65

14

the singular or plural number may also include the plural or
singular number respectively. The word “or,” in reference to a
list of two or more items, covers all of the following interpre-
tations of the word: any of'the items in the list, all of the items
in the list, and any combination of the items in the list.

The above detailed description of embodiments of the dis-
closure is not intended to be exhaustive or to limit the teach-
ings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are
described above for illustrative purposes, various equivalent
modifications are possible within the scope of the disclosure,
as those skilled in the relevant art will recognize. For
example, while processes or blocks are presented in a given
order, alternative embodiments may perform routines having
steps, or employ systems having blocks, in a different order,
and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified to provide alternative
or subcombinations. Each of these processes or blocks may
be implemented in a variety of different ways. Also, while
processes or blocks are at times shown as being performed in
series, these processes or blocks may instead be performed in
parallel, or may be performed at different times. Further any
specific numbers noted herein are only examples: alternative
implementations may employ differing values or ranges.

The teachings of the disclosure provided herein can be
applied to other systems, not necessarily the system described
above. The elements and acts of the various embodiments
described above can be combined to provide further embodi-
ments.

Any patents and applications and other references noted
above, including any that may be listed in accompanying
filing papers, are incorporated herein by reference. Aspects of
the disclosure can be modified, if necessary, to employ the
systems, functions, and concepts of the various references
described above to provide yet further embodiments of the
disclosure.

These and other changes can be made to the disclosure in
light of the above Detailed Description. While the above
description describes certain embodiments of the disclosure,
and describes the best mode contemplated, no matter how
detailed the above appears in text, the teachings can be prac-
ticed in many ways. Details of the system may vary consid-
erably in its implementation details, while still being encom-
passed by the subject matter disclosed herein. As noted above,
particular terminology used when describing certain features
or aspects of the disclosure should not be taken to imply that
the terminology is being redefined herein to be restricted to
any specific characteristics, features, or aspects of the disclo-
sure with which that terminology is associated. In general, the
terms used in the following claims should not be construed to
limit the disclosure to the specific embodiments disclosed in
the specification, unless the above Detailed Description sec-
tion explicitly defines such terms. Accordingly, the actual
scope of the disclosure encompasses not only the disclosed
embodiments, but also all equivalent ways of practicing or
implementing the disclosure under the claims.

While certain aspects of the disclosure are presented below
in certain claim forms, the inventors contemplate the various
aspects of the disclosure in any number of claim forms. For
example, while only one aspect of the disclosure is recited as
a means-plus-function claim under 35 U.S.C. §112, 413,
other aspects may likewise be embodied as a means-plus-
function claim, or in other forms, such as being embodied in
a computer-readable medium. (Any claims intended to be
treated under 35 U.S.C. §112, 913 will begin with the words
“means for”.) Accordingly, the applicant reserves the right to

US 9,342,557 B2

15

add additional claims after filing the application to pursue
such additional claim forms for other aspects of the disclo-
sure.
What is claimed is:
1. A system for performing queries on stored data in a
HADOOP™ distributed computing cluster having a plurality
of data nodes, each data node being a computing device
having processing circuitry and memory circuitry, the system
comprising:
a state store that tracks a status of each data node, wherein
the state store is separate from the data nodes and is
further coupled to a name node that tracks where file data
are stored across the cluster; and
aplurality of data nodes forming a peer-to-peer network for
the queries, each data node functioning as a peer in the
peer-to-peer network and being capable of interacting
with components of the HADOOP™ cluster, each peer
having an instance of a query engine running in memory,
each instance of the query engine having:
a query planner configured to:
receive queries from clients;
obtain, from the state store and the name node, (1)
membership information regarding all query
engine instances that are running in the cluster, and
(2) location information regarding where data
blocks relevant to the queries are distributed among
the plurality of data nodes;

parse queries from clients to create query fragments
based on data obtained from the state store and the
name node; and

construct a query plan based on the data obtained
from the state store;

a query coordinator configured to distribute the query
fragments among the plurality of data nodes accord-
ing to the query plan; and

a query execution engine configured to execute the
query fragments, to obtain intermediate results from
other data nodes that receive the query fragments, and
to aggregate the intermediate results for the clients.

2. The system of claim 1, wherein the distributed comput-
ing cluster is configured to store unstructured data.

3. The system of claim 2, wherein a query coordinator and
a query planner of one of the plurality of data nodes are
selected as an initiating query coordinator and an initiating
query planner, respectively, for a query from a client.

4. The system of claim 3, wherein the initiating query
coordinator and the initiating query planner are selected by a
routing component that uses a load balancing scheme to dis-
tribute queries from clients among the plurality of data nodes.

5. The system of claim 3, wherein the initiating query
coordinator and the initiating query planner are selected
based on the client targeting a specific data node from the
plurality of data nodes to send the query.

6. The system of claim 3, wherein the query fragments are
executed in parallel by query execution engines of data nodes
from plurality of data nodes that have data relevant to the
query.

7. The system of claim 6, wherein the initiating query
coordinator aggregates query results from the query execu-
tion engines and provides the aggregated query results to the
client.

8. The system of claim 7, wherein prior to sending the
query results to the initiating query coordinator, intermediate
query results are streamed between the query execution
engines for pre-aggregation.

9. The system of claim 6, wherein the query execution
engines execute the query fragments directly on APACHE

5

10

20

25

30

40

45

50

60

65

16
HBASE™ data and HADOOP DISTRIBUTED FILE SYS-
TEM (HDFS™) data that comprise the stored data.
10. The system of claim 2, wherein
the state store is further coupled to a metadata store that
stores metadata relevant to a database management
engine implemented in the cluster, and
wherein the query planner is configured to:
obtain, from the state store, metadata associated with the
queries.

11. The system of claim 2, wherein the initiating query
planner uses information from the name node in the cluster to
identify data nodes that have relevant data for the query.

12. The system of claim 2, further comprising a low level
virtual machine component for run-time code generation and
latency reduction.

13. The system of claim 1, wherein the query execution
engines determines a schema-on-read to translate the stored
data into an in memory format at run time.

14. The system of claim 1, wherein the location informa-
tion includes a plurality of replicas of the data blocks relevant
to the queries, and

wherein the query planner or the query coordinator is con-

figured to select one or more, but not all, of the plurality
of replicas for execution of the query fragments.

15. The system of claim 1, wherein, when the state store
fails, the system is configured to continue to operate based on
last information received from the state store.

16. The system of claim 1, wherein all instances of the
query engine, at start up, register with the state store and
obtain the membership information.

17. The system of claim 1, wherein the membership infor-
mation is suitable for devising information about all the query
engine instances that are running in the cluster.

18. The system of claim 1, wherein the state store caches
metadata for running queries and distributes the metadata to
query engine instances at start up and/or at a time when the
metadata is updated.

19. The system of claim 1, wherein, when the state store
fails, rest of the system continues to operate based on last
information received from the state store.

20. The system of claim 1, wherein the name node includes
details of distribution of files across the data nodes to opti-
mize local reads.

21. The system of claim 1, wherein the name node includes
information concerning disk volumes where files are located,
on an individual data node.

22. The system of claim 1, wherein the query planner is
further configured to use a select number of operators to
construct the query plan, and wherein each operator can either
generate data or combine data.

23. A method of executing a query in a HADOOP™ dis-
tributed computing cluster having multiple data nodes form-
ing a peer-to-peer network for the query, each data node
functioning as a peer in the peer-to-peer network and being
capable of interacting with components of HADOOP™ clus-
ter, each peer having an instance of a query engine running in
memory, each instance of the query engine is configured to
perform; the method comprising:

receiving, by a one data node in the distributed computing

cluster, a query;

designating the one data node that receives the query as a

coordinating data node;

obtaining, by the coordinating data node and through a

state store and a name node, (1) membership informa-
tion regarding all query engine instances that are run-
ning in the cluster, and (2) location information regard-

US 9,342,557 B2

17

ing where data blocks relevant to the query are
distributed among the plurality of data nodes,

wherein the state store is separate from the data nodes;

parsing the query to create fragments of the query based on

data obtained from the state store and the name node;
constructing a query plan based on the data obtained from
the state store;

distributing, by the coordinating data node and according

to the query plan, the fragments of the query to data
nodes in the distributed computing cluster that have data
relevant to the query;

receiving, from the data nodes having data relevant to the

query, intermediate results corresponding to execution
of the fragments of the query; and

generating a final result based on the intermediate results

for a client.

24. The method of claim 23, wherein the data nodes
execute the fragments of the query on a distributed file system
or a data store of the distributed computing cluster.

25. The method of claim 24, wherein the distributed com-
puting cluster is an APACHE HADOOP™ cluster, the dis-
tributed file system is a HADOOP DISTRIBUTED FILE
SYSTEM (HDFS™) and the data store is a “NoSQL” (No
Structured Query Language) data store.

26. The method of claim 25, wherein the NoSQL data store
include APACHE HBASE™.

27. The method of claim 25, further comprising:

parsing and analyzing the query to determine tasks to be

performed by query execution engines running on the
data nodes in the APACHE HADOOP™ cluster.

28. The method of claim 27, further comprising:

determining states of the data nodes from a state store,

wherein the state store registers the data nodes at start up
or after a loss of connection.

29. The method of claim 28, further comprising:

determining location of the data relevant to the query from

the state store.

10

15

20

25

30

35

18

30. The method of claim 27, wherein the query execution
engines implement a low level virtual machine for run-time
code generation to reduce latency.
31. The method of claim 25, wherein during execution of
the fragments of the query in parallel across the data nodes,
intermediate results from the execution are streamed between
query execution engines running on the data nodes.
32. The method of claim 25, further comprising:
receiving, by the coordinating data node, pre-aggregated
results of the query from the data nodes; and

performing, by the coordinating data node, an operation on
the pre-aggregated results to determine results of the
query.

33. The method of claim 32, wherein the operation includes
an aggregation operation or an TopN operation.

34. The method of claim 25, wherein the fragments of the
query correspond to plans that include partitions along scan
boundaries.

35. The method of claim 25, wherein the datanode includes
the coordinating data node.

36. The method of claim 23, further comprising:

sending, by the coordinating data node, the results to the

client.

37. The method of claim 23, further comprising:

obtaining, from the state store, metadata associated with

the query.

38. The method of claim 23, wherein the location informa-
tion includes a plurality of replicas of the data blocks relevant
to the queries, and the method further comprising:

selecting one or more, butnot all, ofthe plurality of replicas

for execution of the fragments of the query.

39. The method of claim 23, further comprising:

upon determining that the state store has failed, continuing

to operate based on last information received from the
state store.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,342,557 B2 Page 1of1
APPLICATION NO. : 13/800280

DATED :May 17, 2016

INVENTOR(S) : Marcel Kornacker et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title page 3, in column 2, under “Other Publications”, line 18, delete “Applicaiton” and insert -
- Application --, therefor.

In the specification,

In column 3, line 44, delete “HBASE™” and insert -- HBASE™, --, therefor.

In column 5, line 47, delete “314” and insert -- 316 --, therefor.

In column 5, line 49, delete “314” and insert -- 316 --, therefor.

In column 5, line 54, delete “314” and insert -- 316 --, therefor.

In column &, line 15, delete “HDFS,” and insert -- HDFS™, - therefor.

In the claims,

In column 16, line 56, in claim 23, before “HADOOQOP™" insert -- the --.

In column 16, line 59, in claim 23, delete “perform;” and insert -- perform --, therefor.

In column 17, line 26, in claim 26, delete “include” and insert -- includes --, therefor.

Signed and Sealed this
Sixth Day of September, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

